

PCOS IN ADOLESCENTS

Ricardo Azziz, M.D., M.P.H., M.B.A. Georgia Regents University

EDUCATION

HEALTH

CREATIVITY

INNOVATION

DISCOVERY

PCOS IN TEENS AND ADOLESCENTS

- Diagnosing PCOS
- Caveats for diagnosing PCOS in adolescents:
 - Androgens
 - Hirsutism
 - Menstrual Cycles
 - PCOM ovaries
- Predictors of PCOS
- Recommendations

- There are no established criteria for the diagnosis of PCOS in adolescents
- The diagnosis of PCOS has life-long implications and the features of PCOS may be less well established in adolescents
- Thus, the diagnosis of PCOS in adolescents should be made with great caution
- If the diagnosis is unclear then the most prudent course may be:
 - Expectant management with regular, but not overzealous, follow-up
 - Reassurance and patient (and family) education
 - Lifestyle modification
 - Treatment of individual symptoms/complaints, if needed/desired

COMPARING THE PHENOTYPES OF PCOS BY NIH 1990, ROTTERDAM 2003, AND AE-PCOS 2006

	Phenotypes			
Characteristics	A	В	С	D
Hirsutism/HA	\checkmark	\checkmark	\checkmark	
Ovulatory Dysfunction	\checkmark	\checkmark		\checkmark
Polycystic ovaries	\checkmark		\checkmark	\checkmark
NIH 1990*	\checkmark	\checkmark		
Rotterdam 2003*	\checkmark	\checkmark	\checkmark	\checkmark
AE-PCOS 2006*	\checkmark	\checkmark	\checkmark	

*<u>Always</u> exclude related/similar/mimicking disorders (17-HP, TSH, Prl)

LABORATORY EVALUATION OF THE HIRSUTE OR POTENTIALLY HYPERANDROGENIC PATIENT

• TSH & PRL

- In oligo-ovulatory patients, to R/O other causes of ovulatory dysfunction
- 17-HP
 - To R/O 21-OH deficient NCAH
- d. 22-24 P4 level

- In hirsute eumenorrheic women, 40% of which are anovulatory

- Total & free T, and DHS
 - Most importantly, in evaluating non-hirsute or minimally hirsute patients to R/O Androgen Excess

– <u>MUST USE HIGH-QUALITY WELL-REFERENCED ASSAY</u>

2-H INSULIN AND TESTOSTERONE IN DAUGHTERS OF CONTROL (Cd) AND PCOS WOMEN (PCOSd) DURING THE PREPUBERTAL & PUBERTAL PERIODS

Sir-Petermann et al. J Clin Endocrinol Metab 2007;92:4637-4642

FREE T IN ADOLESCENCE: SIMILAR TO ADULTHOOD

Reference ranges for free testosterone by equilibrium dialysis					
A	ge (years)	Females (pg/mL)			
	5–9	0.2–5.0			
	10–13	0.1–7.4			
	14–17	0.5–3.9			
	18–29	0.2–6.3			
	30–39	0.2–6.3			
	40–49	0.2–6.2			
	50–59	0.2–6.6			
	60–69	0.2–6.5			
	70–79	0.1–3.9			
	80–89	0.4–3.5			

Salameh et al. Steroids 75:169-175, 2010

ASSOCIATION OF ANDROGEN LEVELS WITH ANOVULATION IN ADOLESCENT GIRLS AND YOUNG WOMEN

Fanelli et al. J Clin Endocrinol Metab. 2013;98:3058-67

DHEAS LEVELS IN PCOS AND CONTROLS BY AGE

- DHEAS levels are higher in adolescents, whether with or without PCOS
- Defining AA excess by DHEAS levels <u>without</u> taking into account age will lead to overdiagnosis of AA excess among adolescents

Kumar et al. Clin Endocrinol 62:644, 2005

CAVEATS FOR DIAGNOSING PCOS IN ADOLESCENTS: ANDROGENS

- Androgens levels are most useful to establish hyperandrogenism in patients who have minimal or no clinical evidence of AE (e.g. hirsutism)
 - DHEAS will be higher in adolescence than in any other period
 - TT and FT peak early in adolescence, with adult levels by ~15 y.o. or earlier, and remain relatively stable through adulthood
 - In childhood/peripuberty, girls 'at risk' will have higher DHEAS and INS, but normal TT levels
- We can use adult androgen levels for detecting HA and predicting PCOS in adolescents, recognizing that DHEAS will be normally higher

DIAGNOSING PCOS: EVALUATING FOR CLINICAL HYPERANDROGENISM

- Hirsutism is excess *terminal* hair growth in a *male-like* pattern
 - Distinguish from hypertrichosis (excess vellus hairs)
- Usually 9 body areas are assessed visually (modified Ferriman-Gallwey score)
- No correlation between mFG score and androgen levels (but positive with hyperinsulinemia / BMI)
- ~50% of adult women with mFG scores of 3-5 seen in the clinical setting had PCOS/AE
- Acne may also predict AE, regardless of age

EVALUATING FOR CLINICAL HYPERANDROGENISM: THE MODIFIED F-G (mFG) SCORE

GEORGIA REGENTS

Yildiz et al, Hum Reprod Update 2010;16:51–64

EVALUATING FOR CLINICAL HYPERANDROGENISM: THE MODIFIED F-G (mFG) SCORE

Score 1

Score 2

Lip

Score 3

GEORGIA REGENTS

Score 4

Lower Abdomen

Score I

Score 2

Score 3

Yildiz et al, Hum Reprod Update 2010;16:51–64

DISTRIBUTION OF mFG SCORES, ASSESSING TERMINAL BODY AND FACIAL HAIR GROWTH, IN 350 BLACK AND 283 WHITE UNSELECTED WOMEN

GRU GEORGIA REGENTS

DeUgarte et al, J Clin Endocrinol Metab 91:1345–1350, 2006

PREDICTORS OF HIRSUTISM IN 749 ADULT PATIENTS WITH PCOS

TABLE 2						
Univariate correlation coefficients for each independent variable with mFG score.						
Variable	Mean	SD	n	Spearman correlation	Spearman P value	
Total testosterone, ng/dL	91.2	61.2	748	-0.020	.5906	
Free testosterone, ng/dL	0.9	0.6	746	-0.005	.8907	
DHEAS, ng/mL	2331.5	1290.3	748	-0.039	.2849	
Fasting insulin, mIU/mL	26.9	25.3	383	0.175	.0006	
Fasting glucose, mg/dL	91.1	22.3	399	-0.039	.4372	
HOMA-IR	114.7	143.8	380	0.152	.003	
SHBG, nmol/L	180.3	69.7	746	-0.043	.246	
17-Hydroxyprogesterone, ng/mL	1.4	1.1	736	0.093	.0118	
Age, yrs	27.5	7.4	749	0.017	.6428	
Body mass index, kg/m ²	33.6	9.3	749	0.121	.0009	

Note: HOMA-IR = homeostatic model assessment for insulin resistance; mFG = modified Ferriman-Gallwey.

Landay. Determinants of hirsutism in PCOS. Fertil Steril 2009.

p<0.005 after Bonferroni adjustment for multiple comparisons

Landay et al, Fertil Steril 2009;92:643–7

PREDICTORS OF SEVERITY OF ACNE VULGARIS IN YOUNG ADOLESCENT GIRLS: RESULTS OF A 5-YEAR LONGITUDINAL STUDY

*DHEAS levels were significantly higher in girls who subsequently had severe acne, p<0.03-0.0009
No other differences in hormones studied

GRU GEORGIA REGENTS UNIVERSITY

Lucky et al. J Pediatr. 1997; 130:30-9

CAVEATS FOR DIAGNOSING PCOS IN ADOLESCENTS: HIRSUTISM

- Androgen-related terminal hair growth a male-like pattern in AE is progressive... so...
- Adolescents with significant HA may not (yet) have significant signs of hirsutism
- Patient's self-assessment is important
- However....
 - Need to distinguish hypertrichosis from hirsutism
 - Need to avoid creating unnecessary anxiety
- In adolescents high quality assays for TT/FT may be a more useful marker of hyperandrogenism
- Acne may indicate HA, regardless of age & severity

DIAGNOSING PCOS: DETECTING OVULATORY DYSFUNCTION

- Ovulatory dysfunction is usually reflected in clinically evident menstrual dysfunction
 - Oligo/amenorrhea (<10 cycles/yr, or cycles >34 d. intervals), or
 - Polymenorrhea (cycles <26 d. intervals)
- Severity of menstrual dysfunction predicts degree of IR, but not HA
- ~40% of adult women with hirsutism who claim to be 'eumenorrheic' have anovulation

- Check d. 22-24 P4 level in 'hirsute women with 'normal cycles'

MEDIAN MENSTRUAL CYCLE LENGTHS THROUGHOUT THE REPRODUCTIVE LIFE OF WOMEN FROM MENARCHE (YEAR 0), TO MENOPAUSE (YEAR 40)

90% of all cycles fall within the upper and lower broken lines

Treloar et al. Int J Fertil 12:77, 1967

SEVERITY OF MENSTRUAL DYSFUNCTION PREDICTS DEGREE OF IR

GEORGIA REGENTS

Modified from Brower et al, J Clin Endocrinol Metab 98: E1967–E1971, 2013

PREDICTORS AT AGE 15 YEARS FOR OLIGO-AMENORRHEA AT AGE 18 YEARS

- Adolescents were followed between ages 15 and 18 y.o.
- The risk of developing oligomenorrhea at 18 y.o. was:
 - 2% (2/128) for adolescents with regular menstrual cycles at 15 y.o.
 - 12% (17/148) for girls with irregular menstrual cycles* at 15 y.o.
 - **51%** (34/67) for girls with <u>oligomenorrhea</u>* at 15 y.o.

*Irregular menstrual cycle = average cycle length 22-41 d., and 2 or more cycles <22 or >41 days in length during past year **Oligomenorrhea = average length of the cycle of 42-180 d.

van Hooff M et al. Hum. Reprod. 2004;19:383-392

PREDICTORS AT AGE 15 YEARS FOR OLIGO-AMENORRHEA AT AGE 18 YEARS

The risk of developing persistent OLIGO in girls with irregular menstrual cycles <u>is</u> <u>greater</u> if their initial average menstrual cycle length is 35-41 davs

The risk of persistent OLIGO in girls <u>is greater</u> if their initial BMI is above the median BMI (p50 = 19.6 kg/m² in this study)

van Hooff M et al. Hum. Reprod. 2004;19:383-392

CAVEATS FOR DIAGNOSING PCOS IN ADOLESCENTS: OVULATORY DYSFUNCTION

- A careful history of vaginal bleeding must be taken
 - Age of adrenarche, telarche, and menarche
 - No. vaginal bleeds per year
 - Days between bleeds
 - Predictability of bleeds
 - Presence of Premenstrual Molimina Sx
- Normally cycles may be irregular for up to 2 years post-menarche, however...
- Oligomenorrhea (≥35 d. in length) is the <u>best predictor</u> of continued oligoovulation
- Adolescents with PCOS may present with 1^{ary} amenorrhea (never having had a cycle)

SONOGRAPHIC CRITERIA FOR PCOM

- Presence of 12 or more follicles (<u>should this # be higher?</u>) in each ovary measuring 2-9 mm in diameter, <u>and/or</u>
- Increased ovarian volume (> 10 ml)
- Only one ovary fitting this definition is sufficient to define PCOM
- Does not apply to women taking OCPs
- If evidence of a dominant follicle (> 10 mm) or a corpus luteum, scan should be repeated next cycle

The Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group. Fertil Steril 81:19-25, 2004; & Hum Reprod 19:41-7, 2004

DO PATIENTS WITH POLYCYSTIC OVARIES AND IRREGULAR OVULATION HAVE PCOS?

- 20-30% of patients with eating disorders have PCOM & irregular ovulation (Jahanfar et al, 1995; Morgan et al, 2002)
- 30-50% of patients with hyperprolactinemia, hypothalamic amenorrhea, or 21-OH deficient NCAH have PCOM (Ardaens et al, 1991; Azziz et al, 1994)
- NCAH & CAH patients have a similar prevalence of PCOM as PCOS (Dewailly et al, 1986; Azziz et al, 1994; Hague et al, 1990; Pignatelli et al, 2004)
- Adolescents develop transient PCOM (Giorlandino et al, 1989; Rosenfield et al, 2000)

GRU GEORGIA REGENT

RELATIONSHIP OF PCOM WITH MENSTRUAL CYCLE PATTERNS IN ADOLESCENTS

- 58 adolescents with regular menstrual cycles, 50 with irregular menstrual cycles, and 29 with oligomenorrhea
- PCOM was present in:
 - 9% of the girls with <u>regular</u> menstrual cycles
 - 28% of those with <u>irregular</u> menstrual cycles
 - 45% of <u>oligomenorrheic</u> girls
- LH and androgens were 1, but INS and G:I ratio were similar, in girls w/ PCOM vs. w/o PCOM
- OLIGO girls with PCOM had:
 - The highest androgen and LH levels
 - Similar INS and G:I as girls with regular menstrual cycles and normal ovaries

Van Hooff et al, Fertil Steril. 2000;74:49-58

POLYCYSTIC OVARIES DO NOT PREDICT METABOLIC OR REPRODUCTIVE PHENOTYPE

Legro et al. J Clin Endocrinol Metab 2005;90:2571-9

CAVEATS FOR DIAGNOSING PCOS IN ADOLESCENTS: POLYCYSTIC OVARIES

- Multifollicular ovaries can be a normal finding in adolescence and hence make it difficult to distinguish from polycystic ovaries
- Because the TV-US approach is not appropriate for use in virginal adolescents, it is more difficult to image ovaries in this age group, particularly in obese girls, than in adult women

Khan. J Pediatr Adolesc Gynecol (2007) 20:101-104

DISTRIBUTION OF BIRTH WEIGHTS IN NONOBESE ADOLESCENTS AND YOUNG WOMEN WITH OVARIAN ANDROGEN EXCESS

Birth weights in patients with PCO were higher than in patients without PCO (*P* <0.0005)

Ibanez et al. J Clin Endocrinol Metab 2008;93:196-199

BIRTH-WEIGHT, LENGTH OF GESTATION, AND PCOM IN ADULT LIFE

	No. of women	% with PCOM			
Birthweight (lb)					
≤5·5	13	15%			
5-6-6-5	53	21%			
6-6–7-5	89	18%			
7-6–8-5	60	22%			
>8-5	20	35%			
Weeks of gestation					
≤38	32	16%			
39	55	15%			
40	76	21%			
41	40	25%			
≥42	32	31%			
All women	235	21%			

- The fraction of women who had PCOM <u>tended to</u>
 <u>increase</u> with birthweight,
 though the trend was not significant (p=0.25)
- The fraction of women with PCOM increased with length of gestation (p=0.05)
- The increase in th frequency of PCOM with length of gestation was, however, apparent only in thinner women

PROPORTION OF WOMEN WITH SELF-REPORTED PCOS SYMPTOMS BY BIRTH WEIGHT IN A FINNISH POPULATION

- Longitudinal, population-based study of a cohort of women born in 1966 in northern Finland
- Study population included 2007 women who were not pregnant and did not use hormonal contraception
- 528 (26%) had self-reported symptoms of PCOS
- Overall, birth weight, gestational age, being small for gestational age, or growth retardation at birth were not associated with PCOS symptoms at 31 y.o.

Laitinen et al. Int J Obes Relat Metab Disord 2003 27:710–715

- Presenting signs and symptoms of PCOS are variable
- PCOS should be considered in any adolescent girl with:
 - Unwanted hair growth or frank hirsutism
 - Precocious or premature adrenarche
 - Persistent acne
 - Menstrual irregularity >2 years
 - Acanthosis nigricans
 - Obesity
 - Family history of PCOS, menstrual irregularity or hirsutism

- There are no established criteria for the diagnosis of PCOS in adolescents
- And:
 - Lack of normative values for androgen s, and changing androgen levels over a few years time
 - Interpret high DHEAS with caution
 - Use adult normative ranges for TT and FT post-menarche
 - Hirsutism may be incipient or still mild
 - Examine fully and listen to the patient
 - Irregular cycles are not uncommon in first 2-3 years post-menarche
 - The more severe the oligomenorrhea, the higher the risk that it will persist
 - Difficult to obtain good ovarian imagery
 - Use ovarian volume (>10 cm³) over follicle number

GRU GEORGIA REGENT

- The diagnosis of PCOS has life-long implications and the features of PCOS may be less well established in adolescents
- Thus, the diagnosis of PCOS in adolescents should be made with great caution
- If the diagnosis is unclear then the most prudent course may be:
 - Expectant management with regular, but not overzealous, follow-up
 - Reassurance and patient (and family) education
 - Lifestyle modification
 - Treatment of individual symptoms/complaints, if needed/desired

THANK YOU

